
HOW TO ELIMINATE
COMPLEX SQL QUERY
TRAFFIC JAMS

David Leichner, CMO

Arnon Shimoni, Product Manager

WHAT WE’LL COVER

• Problems with lots of data

• Problems with data prep

• Common causes of bottlenecks

• Tips for improving SQL performance

• The elephant in the room

• Q&A

Unfortunately, many organizations’ data lakes
and other data stores have turned into dumping grounds,

with no easy way to access and analyze their data.

COMPANIES ARE DATA RICH, BUT INSIGHT POOR

Analytic
Data

Data
Lake

% of Data
Analyzed

10 TB 100 TB 10 %

20 TB 500 TB 4 %

30 TB 1 PB 3 %

50 TB 10 PB ½ %

90%
Insights Lost

data analyzed
<10%

… VALUABLE INSIGHTS
GO UNCOVERED

COMMON STRUGGLES FROM INGEST TO INSIGHTS

“We have lots of data,
but I can analyze only

10%”
“Lengthy data
preparation”

“Queries run way too

long and sometimes

not at all”

“Some important queries
are too complex to run”

Queries using too

many system

resources get

canceled”

“Our analytic

reports are limited

in scope”

AVERAGE TIME SPENT ON DATA PREPARATION

Organizations report that they spend
more than 60% of their time in data
preparation, leaving little time for actual
analysis.

Gartner - Market Guide for Data Preparation

 60%
Most data scientists spend only 20% of
their time on actual data analysis and 80%
of their time finding, cleaning, and
reorganizing huge amounts of data, which
is an inefficient data strategy.

Forrester

MAIN REASONS FOR QUERY BOTTLENECKS

1. Size of
the data
stores

4. Varied
location and
storage of data

2. Data
ingest

3. Data
preparation

5. Query coding and
complexity

• Bad (or outdated) schemas

• Legacy data warehousing strategies

• Poor indexing strategies

• Incorrectly configured servers

• Underpowered hardware

COMMON PITFALLS HINDERING QUERY PERFORMANCE

SO HOW DO I MAKE MY SQL QUERIES
RUN FASTER?

IMPROVE PERFORMANCE OF YOUR EXISTING SYSTEMS

• Let the database engine do as much of the work as possible

• Minimize I/O of data to and from the database

• Break complex queries into smaller queries

• Prefer optimized functions, limit wildcards

• Use views carefully

• Check your indexing strategy

• Follow best practices for your DBMS

LET THE DATABASE ENGINE DO THE WORK

• Most DBMSs handle data very efficiently

• Wealth of functionality in text processing,

math, summarization, sorting are best left for

DBMSs, rather than in applications

• Moving some logic from the application to

the DBMS ensures re-usability

MINIMIZE I/O OF DATA TO AND FROM THE DBMS

With very big queries, strain can come from transmitting result sets to

the client. Do you really need all the data?
Reduce the result set size in the DBMS!

• Pull out the names of only the columns you need instead of using SELECT *.

Otherwise, if you have a very wide table, the client may struggle putting it all

together.

• Unless you need to see every row, limit the result set size with LIMIT.

BREAK COMPLEX QUERIES INTO SMALLER QUERIES

Large queries can be hard to work out. Breaking queries into small bits and

using temporary tables can make the query much more understandable.

• Temporary tables and small queries are easier to debug - often eliminate the need for

exotic syntax

• Less sensitive to failing because the query optimizer decides to do things differently

• Gives you a chance to optimize yourself. Sometimes this is better than stuff the DBMS

optimizer hasn’t figured out itself

PREFER OPTIMIZED FUNCTIONS, LIMIT WILDCARDS

Vendor-written functions often outperform SQL functions chained together.

Some examples:

• With lots of Unicode text, using pattern matching (LIKE ‘%foo%’) can result in very

inefficient plans. A function like ISPREFIXOF(x,’foo’) will likely perform better.

• Some DBMSs (like SQream DB and Postgres) are case-sensitive. If you need to match

strings, try doing it on one side only or use a case-insensitive match (ILIKE)

𝑓(𝑥) 𝑔(𝑥,𝑦) ℎ(𝑧,𝑥, 𝑦)

USE VIEWS CAREFULLY

Views are virtual tables that are created from a query.

A view is materialized when you run a query that accesses them.

If your query uses a view, or even your view has another

view, you’re running many queries without knowing it
(This isn’t a problem in SQream DB, but with some

other DBMSs could surprise you).

• Use temporary tables to materialize a view

every hour/day/week or as required

• Consider using a CTE instead of a view.

CHECK YOUR INDEXING STRATEGY

In many DBMSs, indexes speed up your query, letting the DBMS know

where to look for data.

• Apply indices selectively – focus on columns with high cardinality or columns
you use often.

• Too many indices decrease write performance (and take up lots of space):

 Remove indices that aren't used or rarely used.

 Remove indices that are placed on columns that
have random data and/or are frequently updated

INDEXING STRATEGY AFFECTS DATA SIZES, PERFORMANCE

Postgres BRIN index vs. B-Tree

Data by “2ndQuadrant PostgreSQL”, tested on Postgres 9.5

FOLLOW BEST PRACTICES FOR YOUR DBMS

Each DBMS is different, so be sure to apply best practices for the DBMS you use.
However, there are some things that’ll always be true:

1. If one query is slow, check the best practices for query optimization

2. If your whole database is slow, check your system:

• Cluster status – all nodes are up, open for statements

• Query distribution – are all statements ending up on the same node?

• Data distribution – is data not distributed correctly? Could a schema change do some good?

• Deleted rows – many big data DBMSs including SQream DB, Vertica, Postgres benefit from a

periodic maintenance of deleted rows (also called delete predicates, delete vectors)

• Locks – check if any statements are waiting due to locks, like when a big table is being

updated

• Counters – If your DBMS supports it, set up counters to track memory and compute usage

THE ELEPHANT IN THE ROOM…

There’s only so much you can tweak and tune.
When you can’t (or won’t) tune any further,
consider updating your DBMS.

New SQL DBMSs like SQream DB:

 Use compute resources to their fullest,
and then some

 Can automate metadata collection

 Have new methodologies that scale better, less
susceptible to “growing pains”

 Allow joining any amount of tables without
significant performance impact

RESULTS AFTER FOLLOWING BEST PRACTICES

0

100

200

300

400

500

600

700

800

900

1000

0

100

200

300

400

500

600

700

800

900

Customer original Reducing columns, matching

types

Rewriting some queries SQream DB

S
to

ra
g

e
 s

iz
e

(T
B

)

Q
u

e
ry

 t
im

e
 (

se
co

n
d

s)

Query 1 Query 2 Storage size

AIS is the largest mobile operator in Thailand, with over 41 million subscribers.
Faced with increased competition, AIS wants to improve customer service and reduce churn.

EXTREMELY SLOW
Ad-hoc querying

BILLIONS OF CDRs
weekly

DIFFICULTY SCALING
MPP system

AFTER THREE DAYS OF IMPLEMENTATION

Dashboard showing
3G/4G data throughput in
Bangkok through the day

(morning, lunch, evening,
night…)

Larger circles represent
better data throughput.

3 Table Join
(3.3B rows ⋈ 40M rows ⋈ 300K
rows)

Dashboard aggregates
directly off SQream DB,

with no pre-aggregation
steps.

HOW AIS USES ACCELERATED ANALYTICS

1. Segmenting the mobile market

2. Converting customers to better plans

3. Analyzing network performance to maintain superiority

Happier customers that feel “seen”

Holistic view of
network subscribers

Achieve deeper
data analysis

Troubleshoot
multiple locations

WHAT IT MEANS FOR THEIR BUSINESS

Save hours on
queries and reports

Ability to drill down
on massive raw data

Faster competitive
analysis

ADDRESS

Headquarters, 7 WTC
250 Greenwich Street
New York, New York

| sqream.com

WE ARE SOCIAL

linkedin.com/company/sqream_/

@SQreamTech

Q&A
David Leichner, CMO

david@sqream.com

